Лекция 16. Сверточные нейронные сети
6.1. Введение
За последние несколько лет сверточные нейронные сети (CNN) вместе с рекуррентными нейронными сетями (RNN) стали основным строительным блоком при построении сложных решений глубокого обучения для различных задач NLP, речи и временных рядов. LeCun впервые представил определенные базовые части структур CNN в качестве общей структуры NN для решения различных проблем с данными большой размерности в компьютерном зрении, речи и временных рядах [LB95]. ImageNet применяет свертки для распознавания объектов на изображениях; существенно улучшив состояние дел, ImageNet возродил интерес к глубокому обучению и CNN. Collobert et al. впервые применил CNN к задачам NLP, таким как маркировка POS, фрагментирование, разрешение именованных сущностей и маркировка семантических ролей [CW08b]. Многие изменения в CNN, от входного представления, количества уровней, типов объединения, методов оптимизации и приложений до различных задач НЛП, были активными объектами исследований в последнее десятилетие.
В начальных разделах этой главы описываются CNN, начиная с основных операций, и демонстрируется, как эти сети решают проблему уменьшения параметров, создавая при этом индуктивное смещение в сторону локальных шаблонов. В последующих разделах выводятся уравнения прямого и обратного прохода для базовой CNN. Далее представлены приложения CNN и их адаптации для ввода текста. Затем представлены классические структуры CNN, а затем современные структуры, чтобы предоставить читателям примеры разнообразия способов использования CNN в различных областях.
Особое внимание уделяется популярным приложениям CNN для решения различных задач НЛП.
В этой главе также описаны конкретные алгоритмы, которые позволяют глубинным структурам CNN работать более эффективно на современном оборудовании на базе графических процессоров. Чтобы предоставить читателям практический опыт, глава завершается подробным ситуационным анализом анализа настроений авиакомпаний в твитах с использованием многих из обсуждаемых фреймворков CNN с использованием Keras и TensorFlow для реализации. В этом тематическом исследовании читателям предоставляется подробный исследовательский анализ данных, предварительная обработка, обучение, проверка и оценка, аналогичные тому, что можно испытать в реальном проекте.
6.2. Основные строительные блоки CNN
В следующих нескольких разделах представлены фундаментальные концепции и строительные блоки CNN.
Обратите внимание, что, поскольку CNN возникли в приложениях компьютерного зрения, многие термины и примеры в их строительных блоках относятся к изображениям или двумерным (2d) матрицам. По мере продолжения главы они будут сопоставлены с одномерными (1d) данными ввода текста.
6.2.1. Свертка и корреляция в линейных инвариантных во времени системах
6.2.1.1. Линейные инвариантные во времени системы
При обработке сигналов или анализе временных рядов преобразование или система, которая является линейной и инвариантной во времени, называется линейной инвариантной во времени системой (LTI); то есть, если y (t) = T (x (t)), то y (t - s) = T (x (t - s)), где x (t) и y (t) - входные и выходные данные, а T() – их преобразование.
Линейная система обладает следующими двумя свойствами:
1. Масштабирование: T (ax (t)) = aT (x (t))
2. Суперпозиция: T (x1 (t) + x2 (t)) = T (x1 (t)) + T (x2 (t))

6.2.1.2. Оператор свертки и его свойства
Свертка - это математическая операция, выполняемая в системах LTI, в которой входная функция x (t) комбинируется с функцией h (t), чтобы дать новый результат, который означает перекрытие между x (t) и версией с обратным переводом h (t). Функция h (t) обычно известна как преобразование ядра или фильтра. В непрерывной области это можно определить как:
y (t) = (h × x) (t) = ∫∞−∞ h (τ) x (t −τ) dτ                                             (6.1)
В дискретной области, в одном измерении, это можно определить как:
y (i) = (h × x) (i) = ∑nh (n) x (i − n)                                                   (6.2)
Точно так же в двух измерениях, в основном используется в компьютерном зрении с неподвижными изображениями:
y (i, j) = (h × x) (i, j) = ∑n∑mh (m, n) x (i − m, i − n)                        (6.3)
Это также можно записать как взаимную корреляцию или перевернутое, или повернутое ядро:
y (i, j) = (h × x) (i, j) = ∑n∑mx (i + m, i + n) h (−m, −n)                         (6.4)
y (i, j) = (h × x) (i, j) = x (i + m, i + n) × rotate180 {h (m, n)}                (6.5)

Свертка проявляет общие коммутативные, дистрибутивные, ассоциативные и дифференцируемые свойства.
6.2.1.3. Взаимная корреляция и ее свойства
Взаимная корреляция - это математическая операция, очень похожая на свертку, и это мера сходства или силы корреляции между двумя сигналами x (t) и ht (t). Выдается:
y (t) = (h⊗x) (t) = ∫∞−∞ h (τ) x (t + τ)                                                     (6.6)
В дискретной области, в одном измерении, это можно определить как:
y (i) = (h⊗x) (i) = ∑nh (n) x (i + n)                                                        (6.7)
Аналогично в двух измерениях:
y (i, j) = (h⊗x) (i, j) = ∑n∑mh (m, n) x (i + m, i + n)                             (6.8)
Важно отметить, что взаимная корреляция очень похожа на свертку, но не демонстрирует коммутативных и ассоциативных свойств.
Многие CNN используют оператор взаимной корреляции, но эта операция называется сверткой. Мы будем использовать эти термины как синонимы, поскольку основная идея обоих состоит в том, чтобы уловить сходство входных сигналов. Многие из терминов, используемых в CNN, уходят корнями в обработку изображений.
В обычном NN преобразование между двумя последующими слоями включает умножение на матрицу весов. Напротив, в CNN преобразование вместо этого включает операцию свертки.
6.2.2. Локальная связь или разреженные взаимодействия
В базовой сети все блоки входного уровня соединяются со всеми блоками следующего уровня.
Эта возможность подключения отрицательно влияет как на эффективность вычислений, так и на способность входного слоя иметь m = 9 измерений, а скрытого слоя - n = 4 измерения; в полностью подключенной NN, как показано на рис. 6.1a, будет m × n = 36 соединений (таким образом, веса), которые NN должна изучить. С другой стороны, если мы позволим только k = 3 пространственно проксимальным входам подключаться к одному блоку скрытого слоя, как
Как показано на рис. 6.1b, количество подключений уменьшается до n × k = 12. Еще одно преимущество ограничения возможности подключения состоит в том, что ограничение подключений скрытого уровня пространственно-проксимальными входами вынуждает систему прямой связи изучать локальные особенности посредством обратного распространения. Мы будем называть матрицу размерности k нашим фильтром или ядром. Пространственная протяженность связности или размер фильтра (ширина и высота) обычно называют воспринимающим полем из-за наследия компьютерного зрения.
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Рис. 6.1: Локальная связь и редкие взаимодействия. (а) Полностью связанные слои. (б) Локально связанные слои
В трехмерном пространстве ввода глубина фильтра всегда равна глубине ввода, но ширина и высота являются гиперпараметрами, которые можно получить с помощью поиска.
6.2.3. Совместное использование параметров
Совместное использование параметров или связанные веса - это концепция, в которой одни и те же параметры (веса) повторно используются во всех соединениях между двумя уровнями. Совместное использование параметров помогает уменьшить пространство параметров и, следовательно, использование памяти. 
Как показано на рис. 6.2, вместо изучения n × k = 12 параметров, как это произошло бы на рис. 6.2a, если локальные соединения используют один и тот же набор k весов, как показано на рис. 6.2b, существует сокращение использования памяти в n раз. Обратите внимание, что вычисление с прямой связью по-прежнему требует n × k операций. Совместное использование параметров может также привести к свойству преобразования, называемому эквивариантностью, при котором отображение сохраняет структуру. Функция f () эквивалентна функции g (), если f (g (x)) = g (f (x)) для входа x.
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Рис. 6.2: Локальное подключение и совместное использование параметров. (а) Локально связанные слои. (б) Локально связанные слои с разделением параметров
Комбинация локальной связи и совместного использования параметров приводит к созданию фильтров, которые фиксируют общие функции, выступающие в качестве строительных блоков для всех входных данных. При обработке изображений эти общие функции, полученные с помощью фильтров, могут быть базовым обнаружением краев или формами более высокого уровня. В NLP или интеллектуальном анализе текста эти общие функции могут быть комбинациями n-граммов, которые фиксируют ассоциации слов или символов, которые чрезмерно представлены в обучающем корпусе.
6.2.4. Пространственное устройство
Обратите внимание, что количество, расположение и соединения фильтров являются гиперпараметрами модели. Глубина CNN - это количество слоев, тогда как количество фильтров в слое определяет «глубину» последующего слоя. То, как перемещаются фильтры, то есть сколько входов пропускается до следующего экземпляра фильтра, называется шагом фильтра
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Рис. 6.3: Пространственное расположение и взаимосвязь между гиперпараметрами. (а) Пространственное расположение, приводящее к N = (9−3 + 0) /2 + 1 = 4 нейрона в следующем слое. (б) Пространственное расположение, приводящее к N = (9−3 + 2) / 2 +1 = 5 нейронов в следующем слое.
Например, когда шаг равен 2, два входа пропускаются до того, как следующий экземпляр фильтра будет подключен к последующему слою.
Входы могут быть дополнены нулями по краям, чтобы фильтры могли поместиться вокруг крайних блоков. Количество единиц заполнения - еще один гиперпараметр для настройки. На рис. 6.3 показаны различные отступы между слоями. Добавление отступов к краям со значениями 0 называется заполнением нулями; свертка, выполняемая с заполнением нулями, называется широкой сверткой, а без нее - узкой сверткой.
Отношение между количеством входов (входной объем) W, рецептивным полем (размером фильтра) F, размером шага S и нулевым заполнением P приводит к количеству нейронов в следующем слое, как показано в уравнении. (6.9).
N = (W −F + 2P) / S +1                                                                         (6.9)
На рисунке 6.4 показано, как 2-мерный фильтр сворачивается со входом, генерирующим окончательный вывод для этого слоя, с разбивкой по этапам свертки. На рис. 6.4 визуализированы все вышеупомянутые пространственные расположения и показано, как изменение заполнения влияет на количество нейронов в соответствии с приведенным выше уравнением.
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Рис. 6.4: 2d-фильтр размера 2 × 2 на входе 2d размером 3 × 3 дает свернутый выход 2 × 2 с шагом 1 и без заполнения нулями.
На рис. 6.5 процесс свертки расширен до трехмерного входа с тремя каналами (похожими на каналы RGB в изображении) и двумя фильтрами, показывая, как линейная свертка уменьшает объем между слоями. Как показано на рис. 6.6, эти фильтры действуют как сложный механизм обнаружения признаков. Учитывая большой объем обучающих данных, CNN может изучать фильтры, такие как горизонтальный край, вертикальный край, контур и другие в процессе классификации.
Количество каналов в фильтрах должно соответствовать количеству каналов на его входе.
Большинство практических наборов инструментов или библиотек, реализующих CNN, выдают исключения или безопасно обрабатывают отношения, когда гиперпараметры нарушают ограничения, заданные уравнением. (6.9)
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Рис. 6.5: Иллюстрация изображения размером 6 × 6 × 3 (высота × ширина × каналы) свертка с двумя фильтрами размером 3 × 3 × 3 каждый, без заполнения и шагом 1, в результате получается 4 × 4 × 2. Два фильтра можно рассматривать как работающие параллельно, в результате в два выхода справа от схемы
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Рис. 6.6: Четыре фильтра, фиксирующие основные характеристики изображения
6.2.5. Детектор, использующий нелинейность
Результатом свертки является аффинное преобразование, которое передается в нелинейный слой или преобразование, известное как слой / этап детектора. Это очень похоже на функцию активации, изученную в гл. 4, где аффинное преобразование весов и входов проходит через функцию нелинейного преобразования. Слой детектора обычно использует сигмоид f (x) = 1/(1 + e−x), гиперболический тангенс f (x) = tanh (x) или ReLU f (x) = max (0, x) в качестве нелинейной функции. Как обсуждалось в гл. 4, ReLU - самая популярная функция из-за простоты вычисления и простого дифференцирования. Было также показано, что ReLU приводит к лучшему обобщению при использовании в CNN.
6.2.6. Объединение и субдискретизация
Выходные данные одного уровня можно дополнительно субдискретизировать для сбора сводной статистики локальных нейронов или подобластей. Этот процесс называется объединением, субдискретизацией или понижающей выборкой в ​​зависимости от контекста. Обычно выходы каскада детектора становятся входами для уровня объединения.
Объединение имеет много полезных эффектов, таких как уменьшение переобучения и уменьшение количества параметров. Конкретные типы объединения также могут привести к инвариантности.
Инвариантность позволяет идентифицировать признак независимо от его точного местоположения и является важным свойством при классификации. Например, в задаче обнаружения лица наличие признаков, указывающих на глаз, не только важно, но и существует независимо от его местоположения на изображении.
Существуют разные методы объединения, каждый со своими преимуществами, и конкретный выбор зависит от решаемой задачи. Когда систематическая ошибка метода объединения соответствует предположениям, сделанным в конкретном приложении CNN, например, в примере обнаружения лиц, можно ожидать значительного улучшения результатов. Некоторые из наиболее популярных методов объединения перечислены ниже.
6.2.6.1. Максимальное объединение
Как следует из названия, операция максимального объединения выбирает максимальное значение нейронов из своих входов и, таким образом, вносит свой вклад в свойство инвариантности, описанное выше. Это показано на рис. 6.7. Формально, для 2-мерного вывода со стадии обнаружения, максимальный уровень объединения выполняет преобразование:
hii,j = maxр,qhl−1t+р, j+q                                                                     (6.10)
где p и q обозначают координаты нейрона в его локальной окрестности, а l представляет слой. При объединении k-max вместо одного значения в операции объединения max возвращается k значений.
[image: ]
Рис. 6.7: Примеры операций объединения. (а) Максимальное объединение. (б) Средний пул
6.2.6.2. Средний пул
При среднем или среднем объединении значения локальных соседних нейронов усредняются для получения выходного значения, как показано на рис. 6.7. Формально средний пул выполняет преобразование:
hii,j = 1/ m2 ∑р,qhl−1i+р, j+q                                                                 (6.11)
где m × m - размерность ядра.
6.2.6.3. Объединение норм L2
L2-нормированный пул является обобщением среднего пула и определяется как:
hli,j = √∑р,qhl−1i+р, j+q2                                                                      (6.12)
На самом деле существует множество вариантов объединения, например, объединение k-max, динамическое объединение, динамическое объединение k-max и другие.
6.2.6.4. Стохастический пул
При стохастическом объединении, вместо выбора максимума, выбранный нейрон извлекается из полиномиального распределения. Стохастический пул работает аналогично отсеву при решении проблемы переобучения [ZF13b].
6.2.6.5. Спектральный пул
При спектральном объединении пространственный вход преобразуется в частотную область посредством дискретного преобразования Фурье (ДПФ) для захвата важных сигналов в нижнем измерении. Например, если на входе x ∈ Rm × m и его нужно уменьшить до размера h × w, на входе выполняется операция DFT, так что частотное представление поддерживает центральную подматрицу h × w; затем выполняется обратное ДПФ для преобразования обратно в пространственную область [RSA15]. Это преобразование приводит к уменьшению размерности пространства и может быть очень эффективным в определенных приложениях.
6.3. Прямое и обратное распространение в CNN
Теперь, когда все основные компоненты описаны, они будут подключены. В этом разделе также будет рассмотрен пошаговый процесс, чтобы четко понять различные операции, участвующие в прямом и обратном проходе в CNN.
В интересах ясности мы рассмотрим базовый блок CNN, состоящий из одного сверточного слоя, функции нелинейной активации, такой как ReLU, которая выполняет нелинейное преобразование, и слоя объединения. В реальных приложениях несколько блоков, подобных этому, складываются вместе, чтобы сформировать сетевые уровни. Выход этих блоков затем выравнивается и подключается к полностью подключенному выходному слою. Процесс выравнивания преобразует многомерный тензор в одномерный вектор, например, трехмерный (W, H, N) в вектор размерности d = W × H × N.
Начнем вывод для слоя l, который является выходом свертки на слое l - 1. Слой l имеет высоту h, ширину w и каналы c. Предположим, что есть один канал, т.е. c = 1, и есть итераторы i, j для входных измерений. Мы будем рассматривать фильтр k1 × k2 размерностей с итераторами m, n для операции свертки.
Матрица весов с весами Wlm,n и смещением bl преобразует предыдущий слой l - 1 в слой l посредством операции свертки. Сверточный слой сопровождается нелинейной функцией активации, такой как ReLU f (·). Выход для слоя l обозначается Oli,j.
Таким образом, прямое распространение для слоя l можно записать как:
Xli,j = rotate180 {Wlm,n} × Ol−1i, j + bl                                               (6.13)
Это можно расширить как:
Xli,j = ∑m∑nWlm,nОl−1i+m, j+n + bl                                                     (6.14)
и
Oli,j = f (Xli,j)                                                                                  (6.15)
Мы предполагаем, что механизмы ошибок или потерь, такие как среднеквадратическая ошибка E, используются для измерения разницы между предсказаниями и фактическими метками. Ошибки должны быть переданы обратно, и необходимо обновить веса фильтра и входные данные, полученные на уровне l. Таким образом, в процессе обратного распространения нас интересует градиент ошибки E относительно (относительно) входа (∂E / ∂X) и весов фильтра (∂E / ∂W).
6.3.1. Градиент относительно весов ∂E / ∂W
Сначала мы рассмотрим влияние одного пикселя (m, n) ядра, заданного Wm, n, на ошибку E, используя цепное правило:
∂E / ∂Wlm,n = ∑h−k1i = 0 ∑w−k2j = 0∂E / ∂Xli,j ∂Xli,j / ∂Wlm,n                     (6.16)
Если мы рассматриваем (δli,j) как ошибку градиента для слоя l относительно входа, приведенное выше уравнение можно переписать как:
∂E / ∂Wlm,n = ∑h−k1i = 0 ∑w−k2j = 0δli,j∂Xli,j / ∂Wlm,n                               (6.17)
Записывая изменение вывода через входы (предыдущий слой), получаем:
∂Xli,j / ∂Wlm,n = ∂ / ∂Wlm,n (∑m∑nWlm,nOl−1i+m, j+n + bl)                      (6.18)
Когда мы берем частные производные по Wm, n, все значения становятся равными нулю, за исключением компонентов, отображаемых в m = m и n = n.
∂Xli,j / ∂Wlm,n = ∂ / ∂Wlm,n (Wl0,0Ol−1 i+0, j+0 + ··· + 
Wlm,n Ol−1i+m, j+n + ··· + bl)                                                        (6.19)
∂Xli,j / ∂Wlm,n = ∂ / ∂Wlm,n Wlm,n Ol−1i+m, j+n                                         (6.20)
∂Xli,j / ∂Wlm,n = Ol−1i+m, j+n                                                                (6.21)
Подставляя результат обратно, получаем:
∂E / ∂Wlm,n = ∑h−k1i = 0 ∑w−k2j = 0δli,jOl−1i+m, j+n                                   (6.22)
Весь процесс можно резюмировать как свертку градиентов с поворотом на 180 градусов δli,j слоя l с выходами слоя l – 1, то есть Ol−1i+m, j+n. Таким образом, новые веса, подлежащие обновлению, могут быть вычислены очень аналогично прямому проходу.
∂E / ∂Wlm,n = rotate180 {δli, j} × Ol−1m,n                                             (6.23)
6.3.2. Градиент относительно входных данных ∂E / ∂X
Далее нас интересует, как изменение одиночного ввода, заданного Xi, j, влияет на ошибку E. Заимствуя из компьютерного зрения, входной пиксель Xi, j после свертки влияет на область, ограниченную верхним левым (i + k1 −1, j + k2 −1) и внизу справа (i, j).
Итак, получаем:
∂E / ∂Xli,j = ∑ k1−1m = 0∑k2−1n = 0∂E / ∂Xl + 1i −m, j −n∂Xl + 1i −m, j −n / ∂Xli,j   (6.24)
∂E / ∂Xli,j = ∑k1−1m = 0∑k2−1n = 0δl+1i−m, j−n∂Xl+1i−m, j –n / ∂Xli,j                   (6.25)
Расширяя только скорость изменения входных данных, получаем:
∂Xl + 1i −m, j –n / ∂Xli,j = ∂ / ∂Xli,j (∑m ∑n Wl+1m,n Oli−m+m’, j−n+n’ + bl + 1)   (6.26)
Записывая это в терминах входного слоя l, мы получаем:
∂Xl+1i−m, j−n / ∂Xli,j = ∂ / ∂Xli,j (∑m∑nWl+1m,n f(Xli−m+m’, j-n+n) + bl+1)      (6.27)
Все частные производные приводят к нулю, за исключением случаев, когда m = m’ и n = n’, f(Xli−m+m’, j−n+n’) = f(Xli,j) и Wl+1m' ,n’ = Wl+1m,n в соответствующих регионах вывода.
∂Xl+1i−m, j−n / ∂Xli,j = ∂/∂Xli,j (Wl+1m,n f (Xl0−m+m, 0−n+n + ··· + 
                                Wl+1m,nf (Xli,j + ··· + bl+1 ))                                     (6.28)
∂Xl+1i−m, j−n ∂Xli,j = ∂ / ∂Xli,j (Wl+1m,n f (Xli,j ))                                         (6.29) 
∂Xl+1i−m, j−n ∂Xli,j = Wl+1m,n f (Xli,j)                                                          (6.30)

Подставляя, получаем:
∂E/∂Xli,j = ∑k1−1m = 0∑k2−1n = 0δl+1i’−m, j’−nWl+1m,n f (Xli,j)                            (6.31)
Срок
∑k1-1m=0 ∑k2−1n = 0 δl+1i−m, j−nWl+1m,n можно рассматривать как перевернутый фильтр или фильтр, повернутый на 180 градусов, выполняющий свертку с матрицей δ.
Таким образом,
∂E / ∂Xli,j = (δl+1i,j × rotate180 {Wl+1m,n}) f’ (Xli, j )                        (6.32)
6.3.3. Максимальный уровень пула
Как мы видели в разделе объединения, уровень объединения не имеет весов, а просто уменьшает размер входных данных в зависимости от выполняемых пространственных операций. При прямом проходе операция объединения приводит к преобразованию матрицы или вектора в одно скалярное значение.
При максимальном объединении запоминается нейрон или клетка-победитель; когда необходимо выполнить обратное распространение ошибки, вся ошибка передается этому нейрону-победителю, поскольку другие не внесли свой вклад. При среднем объединении блок объединения n × n во время обратного распространения делит общее скалярное значение на 1/ (n × n) и равномерно распределяет его по блокам.
6.4. Текстовые вводы и CNN
Различные задачи NLP и NLU в интеллектуальном анализе текста используют CNN в качестве блока разработки функций. Мы начнем с базовой классификации текста, чтобы выделить некоторые важные аналогии между изображениями в компьютерном зрении и отображениями в тексте, а также необходимые изменения в процессе CNN.
6.4.1. Вложения слов и CNN
[image: ]
Рис. 6.8: Показано отображение простого текста и CNN.
Предположим, что все обучающие данные представлены в виде предложений с метками и заданной максимальной длины s. Первое преобразование - преобразовать предложения в векторное представление. Один из способов - выполнить функцию поиска для каждого слова в предложении для его представления с фиксированной размерностью, такого как вложения слов. Предположим, что поиск представления слова с фиксированным размером словаря V дает вектор фиксированной размерности, и пусть это будет d; таким образом, каждый вектор может быть отображен в Rd.
Строки матрицы представляют слова предложений, а столбцы могут быть вектором фиксированной длины, соответствующим представлению. Предложение представляет собой вещественную матрицу X ∈ Rs × d.
Общая гипотеза, особенно в задачах классификации, заключается в том, что слова, которые являются локальными в последовательности, как n-граммы, при объединении образуют сложные признаки более высокого уровня. Эта комбинация локальных слов в непосредственной близости аналогична компьютерному зрению, где локальные пиксели могут быть объединены для формирования таких функций, как линии, края и реальные объекты. В компьютерном зрении с представлениями изображений сверточный слой имел фильтры меньшего размера, чем входные данные, выполняющие операции свертки путем скольжения по изображению фрагментами. При интеллектуальном анализе текста первый уровень свертки обычно имеет фильтры того же размера d, что и входные, но имеет переменную высоту h, обычно называемую размером фильтра.
Рисунок 6.8 иллюстрирует это на предложении «Кот сидел на циновке», которое токенизируется в s = 6 слов {The, cat, sat, on, the, mat}. Операция поиска позволяет получить трехмерные вложения слов (d = 3) для каждого слова. Одиночный фильтр свертки с высотой или размером h = 2 начинает создание карты признаков. Выходной сигнал проходит через нелинейную активацию ReLU с порогом 0,0, которая затем передается в пул 1-max. На рис. 6.8 показано конечное состояние, полученное при использовании одного и того же разделяемого ядра для всех входов, что дает единственный выход в конце пула 1-max.
На рис. 6.9 представлена ​​обобщенная методология от предложений до вывода в простой структуре CNN. В реальном мире многие представления входных слов могут существовать подобно изображениям, имеющим цветовые каналы в поле компьютерного зрения. Различные векторы слов могут отображаться в каналы, которые могут быть статичными (то есть предварительно обученными) с использованием хорошо известного корпуса и не изменяться. Они также могут быть динамическими, и даже если они были предварительно обучены, обратное распространение может точно настроить его. Существуют различные приложения, которые используют не только вложения слов для представления, но также теги POS для слов или позиции в последовательности. Приложение и текущая задача НЛП определяют конкретные представления.
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Рис. 6.9: Простое отображение текста и CNN. Предложения к представлениям слов, отображение на вложения с разными каналами действуют как вход. Различные фильтры для каждой высоты, т. e. 2 ​​фильтра размером 2 и 3 каждый, показанные двумя оттенками, захватывают различные функции, которые затем передаются в нелинейную обработку для генерации выходных данных.
Как правило, выходные данные представляют собой области, и их несколько, различающихся по размеру, как правило, от 2 до 10, т. е. скольжение по 2–10 словам. Для каждого размера области может быть несколько изученных фильтров, заданных параметром nj. Подобно вычислениям представления изображения, полученным выше, есть области (s-h) / stride + 1, где stride - это количество слов, которые проходят фильтры. Таким образом, выходом сверточных слоев являются векторы размерности Rs − h + 1 для шага 1. Формально,
oi = W · X [i: i + h − 1 ,:]                                                                 (6.33)
Это уравнение представляет, как матрица фильтра W высотой h скользит по матрице области, заданной как X [i: i + h - 1 ,:] с единичным шагом. Для каждого фильтра используются общие веса, как в фреймворках на основе изображений, дающих локальное извлечение признаков. Затем выходной сигнал переходит в нелинейную функцию активации f (a), чаще всего ReLU. Выходные данные создают карту характеристик ci со смещением b для каждого фильтра или региона, как показано ниже:
ci = f (oi) + b                                                                                    (6.34)
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Рис. 6.10: Два простых предложения с заполнением и трехмерными вложениями слов, проходящие через один и тот же единственный фильтр размера или высоты 2, ReLU с порогом 0 и максимальное объединение во времени, приводят к аналогичному выходному значению, соответствующему 2 -грамма «Кот»
Выходной вектор каждой карты функций проходит через слой объединения, как обсуждалось ранее. Уровень объединения обеспечивает свойство понижающей дискретизации и инвариантности, как упоминалось выше. Слой объединения также помогает справляться с переменной длиной слов в предложениях, обеспечивая уменьшенную размерность cˆ для всего вектора. Поскольку векторы представляют слова или последовательности во времени, максимальное объединение в текстовой области называется максимальным объединением во времени. Как два текста разного размера сводятся к одноразмерному представлению посредством максимального объединения с течением времени, показано на рис. 6.10.
В классификации кратких текстов эффективен пул 1-макс. В классификации документов лучшим выбором было объединение k-max.
Выходные данные уровней объединения объединяются и передаются на уровень softmax, который выполняет классификацию на основе количества категорий или меток.
При представлении текста и выполнении операций CNN с текстом существует множество вариантов гиперпараметров, таких как тип представления слова, выбор количества представлений слов, шагов, отступов, ширины фильтра, количества фильтров, функции активации, размера пула, типа пула и количество блоков CNN перед последним слоем softmax, и это лишь некоторые из них.
Общее количество гиперпараметров для одного простого блока CNN с выводом для обработки текста может быть задано как 
Они проходят через операцию максимального пула, которая выбирает максимальные значения из каждого фильтра. Значения объединяются для формирования окончательного выходного вектора параметров 
= [(V +1) × d]WordEmbeddings (статические) + [((h × d) × nf) + nf ]фильтры + 
[nf +1] SoftmaxOutput                                                                    (6.35)

Теперь мы предоставим формальную обработку от ввода до вывода для простой CNN в текстовой области с представлениями слов. Для предложения переменной длины из обучающих данных со словами максимальной длины s, имеющими аналогичный поиск для вложений слов с размером вектора d, мы получаем входной вектор в Rd. Для всех других предложений, в которых меньше s слов, мы можем использовать заполнение 0 или случайными значениями во входных данных. Как и в предыдущем разделе, может быть много представлений этих слов, таких как статическое или динамическое, различные вложения для слов, такие как word2vec, GloVe и т. д., и даже разные вложения, такие как позиционное, на основе тегов (POS-тег) и т.д., все они образуют входные каналы с единственным ограничением, что все они имеют одинаковую размерность.
Фильтр свертки можно рассматривать как веса в 1d той же длины, что и вложение слова, но скользящие по словам размера h. Это может создавать разные окна слов W1: h, W2: h…Wn-h+1: n. Эти векторы признаков представлены как [o1, o2, ..., on−h+1] в Rn−h+1, которые проходят через нелинейную активацию, такую ​​как ReLU. Выход нелинейной активации имеет ту же размерность, что и вход, и может быть представлен как [c1, c2, ..., cn−h+1] в Rn−h+1. Наконец, выходные данные нелинейной функции активации далее передаются на максимальный уровень объединения, который находит одно скалярное значение cˆ в R для каждого фильтра. На практике существует несколько фильтров для каждого размера h, и есть фильтры нескольких размеров для h, варьирующихся от 2 до 10 в общем случае.
Выходной слой объединяет все выходы c максимального уровня объединения в один вектор и использует функцию softmax для классификации. Замечания относительно дополнения предложений в начале и конце, длины шага, узких или широких сверток и других гиперпараметров такие же, как в общем процессе отображения свертки.
6.4.2. Символьное представление и CNN
Во многих задачах, связанных с классификацией, размер словарного запаса увеличивается, и учет невидимых слов при обучении даже при встраивании приводит к неоптимальной производительности. Работа Zhang et al. [ZZL15] использует вложения на уровне символов вместо встраивания на уровне слов во входных данных для обучения, чтобы преодолеть такие проблемы. Исследователи показывают, что встраивание символов приводит к открытому словарю, способу обрабатывать слова с ошибками, чтобы назвать несколько преимуществ. На рис. 6.11 показана спроектированная CNN, имеющая множество блоков свертки 1d сверточного слоя, нелинейных активаций и объединения k-max, которые сложены вместе, чтобы сформировать глубокий сверточный слой. В представлении используется хорошо известный набор из 70 буквенно-цифровых символов со всеми строчными буквами, цифрами и другими символами с использованием однократного кодирования. Комбинация символов фиксированного размера l = 1024 в качестве фрагмента ввода в заданный момент времени формирует ввод для текста переменной длины. Всего используется 6 блоков из 2 наборов CNN, каждый разного размера, из которых 1024 измерения больше и меньше 256 измерений. Два слоя имеют высоту фильтра 7, а остальные имеют высоту 3, с объединением 3 в первые несколько и шагами 1. Последние 3 слоя полностью связаны. Последний слой - это слой soft-max для классификации.
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Рис. 6.11: Символьная CNN для классификации текста
6.5. Классическая архитектура CNN
В этом разделе мы рассмотрим некоторые из стандартных архитектур CNN. Мы подробно обсудим их структуру и дадим исторический контекст для каждого. Хотя многие из них были популярны в области компьютерного зрения, они все еще применимы с вариациями в текстовой и речевой областях.
6.5.1. LeNet-5
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Рис. 6.12: LeNet-5
LeCun et al. представил LeNet-5 как одну из первых реализаций CNN и показал впечатляющие результаты в решении проблемы распознавания рукописных цифр [LeC + 98].
На рис. 6.12 показан полный дизайн LeNet-5. Лекун продемонстрировал концепцию уменьшения высоты и ширины с помощью сверток, увеличения размера фильтра / канала и наличия полностью связанных слоев с функцией стоимости для распространения ошибок, которые сейчас являются основой всех структур CNN. LeNet-5 использовал набор данных MNIST из 60K обучающих данных для обучения и изучения весов. Во всех наших обсуждениях с этого момента представление слоя будет даваться как nw × nh × nc, где nw, nh, nc - ширина, высота и количество каналов / фильтров. Далее мы подробно расскажем о конструкции, касающейся входов, выходов, количества фильтров и операций объединения.
· Входной слой использует только значения пикселей в градациях серого и имеет размер 32 × 32 × 1. Нормализовано до среднего значения 0 и дисперсии 1.
· Фильтр 5 × 5 × 6 без заполнения и шага s = 1 используется для создания слоя размером 28 × 28 × 6.
· Затем следует средний слой объединения с шириной фильтра f = 2 и шагом s = 2, в результате чего получается слой размером 14 × 14 × 6.
· Другой сверточный слой 5 × 5 × 16 применяется без заполнения и шаг s = 1 для создания слоя размером 10 × 10 × 16.
· Другой средний слой объединения с шириной фильтра f = 2 и шагом s = 2, что приводит к уменьшению высоты и ширины, дает слой размером 5 × 5 × 16.
· Затем он подключается к полностью связанному слою размером 120, а за ним следует еще один полностью связанный слой размером 84.
· Эти 84 свойства затем передаются в функцию вывода, которая использует евклидову радиальную базисную функцию для определения, какие из 10 цифр представлены этими функциями.
1. LeNet-5 использовал функцию tanh для нелинейности вместо ReLU, которая более популярна в современных структурах CNN.
2. Сигмоидная нелинейность была применена после объединяющего слоя.
3. LeNet-5 использовал евклидову радиальную базисную функцию вместо softmax, которая сегодня более популярна.
4. Количество параметров / весов в LeNet-5 составляло приблизительно 60K с приблизительно 341K умножениями и накоплениями (MACS).
5. В то время использовалась концепция отсутствия прокладки, которая приводит к уменьшению размера, но в наши дни она не очень популярна.

6.5.2. AlexNet
AlexNet, разработанный Крижевским и др. [KSH12a] была первой архитектурой глубокого обучения, которая выиграла конкурс ImageNet в 2012 году с большим отрывом (около 11,3%).
AlexNet во многом отвечал за фокусирование внимания на исследованиях глубокого обучения [KSH12a]. Его конструкция очень похожа на LeNet-5, но с большим количеством слоев и фильтров, что приводит к большей сети и большему количеству параметров для изучения. Работа в [KSH12a] показала, что с помощью фреймворков глубокого обучения функции можно изучать вместо того, чтобы создавать вручную с глубоким пониманием предметной области. Детали проекта AlexNet перечислены ниже (рис. 6.13):
· В отличие от LeNet-5, AlexNet использовал все три канала входов. Размер 227 × 227 × 3 свернут с фильтром 11 × 11 × 96, шагом s = 4 и с нелинейностью, выполняемой ReLU, что дает выход 55 × 55 × 96.
· Это проходит через слой максимального объединения с размером 3 × 3 и шагом s = 2 и снижает выход до 27 × 27 × 96.
· Этот слой проходит через локальную нормализацию отклика (LRN), которая эффективно нормализует значения по глубине каналов, а затем другую свертку размером 5 × 5 × 256, шаг s = 1, заполнение f = 2, с применением ReLU для получения выход 27 × 27 × 256.
· Это проходит через слой максимального объединения с размером 3 × 3 и шагом s = 2, уменьшая вывод до 13 × 13 × 256.
· За ним следует LRN, еще одна свертка размером 3 × 3 × 384, шаг s = 1, заполнение f = 1, с применением ReLU для получения выходных данных 13 × 13 × 384.
· За этим следует еще одна свертка размером 3 × 3 × 384, шаг s = 1, заполнение f = 1, с применением ReLU для получения на выходе 13 × 13 × 384.
· За этим следует свертка размером 3 × 3 × 256, шаг s = 1, заполнение f = 1, с применением ReLU для получения на выходе 13 × 13 × 256.
· Это проходит через слой максимального объединения с размером 3 × 3 и шагом s = 2, уменьшая вывод до 6 × 6 × 256.
· Этот выходной сигнал 6 × 6 × 256 = 9216 передается на полностью связанный слой размером 9216, за которым следует выпадение 0,5, применяемое к двум полностью связанным слоям с ReLU размером 4096.
· Выходной слой - это слой softmax со 100 классами или категориями изображений для изучения.
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Рис. 6.13: AlexNet
1. AlexNet использовал ReLU и показал, что это очень эффективная функция нелинейной активации. ReLU продемонстрировал шестикратное улучшение производительности по сравнению с сигмоидом на наборе данных CIFAR, поэтому исследователи выбрали ReLU.
2. Количество параметров / весов в было примерно 63,2 миллиона, и примерно 1,1 миллиарда вычислений, что значительно больше, чем в LeNet-5.
3. Ускорение было получено за счет двух графических процессоров. Слои были разделены, так что каждый графический процессор работал параллельно с выводом на следующий уровень, расположенный в его узле, и отправлял информацию другому. Даже с графическими процессорами для 90 эпох обучения потребовалось 5–6 дней обучения на 1,2 миллиона обучающих примеров.

6.5.3. VGG-16
VGG-16, также известный как VGGNet, Симонян и Зиссерман, известен своей унифицированной конструкцией и был очень успешным во многих областях [SZ14]. Равномерность в том, что все свертки имеют размер 3 × 3 с шагом s = 1 и максимальное объединение с 2 × 2, а количество каналов увеличивается с 64 до 512 кратно 2, делает его очень привлекательным и простым в настройке. Было показано, что складывание сверток 3 × 3 с шагом s = 1 в трех слоях эквивалентно 7 × 7 сверток и со значительно сокращенным количеством вычислений. VGG-16 имеет два полностью связанных слоя на конце со слоем softmax для классификации. Единственный недостаток VGG-16 - огромная сеть с примерно 140 миллионами параметров. Даже с настройками графического процессора, для обучения модели потребовалось бы много времени (рис. 6.14).
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Рис. 6.14: VGG-16 CNN
6.6. Современные архитектуры CNN
Мы обсудим изменения, которые привели к появлению современных архитектур CNN в различных областях, включая интеллектуальный анализ текста.
6.6.1. Составная или иерархическая CNN
Показано, что базовое сопоставление CNN с предложениями со сверточным фильтром размера k аналогично детектору токенов ngram в классических настройках НЛП. Идея многослойной или иерархической CNN состоит в том, чтобы расширить принцип за счет добавления дополнительных слоев.
При этом размер воспринимающего поля увеличивается, и большие окна слов или контекстов будут захвачены как объекты, как показано на рис. 6.15.
Если мы рассмотрим (W, b) как параметры, соответствующие весам и смещениям, ⊕ как операцию конкатенации, выполняемую над предложением длины n с последовательностью вложений слов e1: n, каждое из d измерения, и k как размер окна свертка, вывод определяется как: c1: m 
c1: m = CONVk(W, b) (e1: n)                                                                   (6.36)
ci = f (⊕ (wi: i+k−1) · W + b)                                                               (6.37)

где m = n − k +1 для узких сверток и m = n + k +1 для широких сверток.
Если мы рассмотрим p слоев, где свертка одного переходит в другой, то мы можем написать
c11: m1 = CONVk1(W1, b1) (w1: n) 
c21: m2 = CONVk2(W2, b2) (c11: m1) 
·· 
cp1: mp = CONVkp(Wp, bp) (cp−11: mp−1 )                                                    (6.38)
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Рис. 6.15: Иерархическая CNN
По мере того, как слои переходят друг в друга, эффективный размер окна или воспринимающее поле для захвата сигнала увеличивается. Например, если в классификации тональности есть предложение: фильм не очень хороший, фильтр свертки с размером 2 не будет захватывать последовательность «не очень хороший», но сложенный CNN с тем же размером 2 захватит это в более высоких слоях.
6.6.2. Расширенный CNN
В составной CNN мы предполагали шаги размера 1, но если мы обобщим шаг до размера s, мы можем записать операцию свертки как:
c1: m = CONVk, s(W, b)(w1: n)                                                                   (6.39)
ci = f (⊕ (w1+(i−1) s: (s+k) i) · W + b)                                                        (6.40)

Расширенный CNN можно рассматривать как специальную версию многоуровневой CNN. Один из способов - иметь размер шага каждого слоя k-1, когда размер ядра равен k.
c1: m = CONVk, k−1(W, b) (w1: n)                                                               (6.41)
Свертки размера k × k на l слоистой CNN без объединения приводят к получению рецептивных полей размером l × (k − 1) + k, который линейен с количеством слоев l. Расширенные CNN помогают экспоненциально увеличивать рецептивное поле по отношению к количеству слоев. Другой подход состоит в том, чтобы поддерживать постоянный размер шага, как в s = 1, но выполнять сокращение длины на каждом уровне, используя локальное объединение, используя максимальное или среднее значение в качестве значений. На рис. 6.16 показано, как при постепенном увеличении дилатации слоев, рецептивные поля могут быть экспоненциально увеличены, чтобы покрыть большее поле в каждом слое [YK15].
1. Расширенные CNN помогают фиксировать структуру предложений на более длинных отрезках текста и эффективны при захвате контекста.
2. Расширенный CNN может иметь меньше параметров и, таким образом, увеличить скорость обучения при захвате большего контекста.
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Рис. 6.16: Расширенная CNN, показывающая увеличение рецептивных полей с расширениями, изменяющимися на 1,2 и 4.
6.6.3. Начальные сети
Начальные сети Szegedy et al. [Sze + 17] в настоящее время являются одной из самых эффективных сетей CNN, особенно в области компьютерного зрения. Ядро начальной сети - это повторяющийся начальный блок. Начальный блок использует множество фильтров, таких как 1 × 1, 3 × 3 и 5 × 5, а также максимальное объединение без необходимости выбирать какой-либо из них. Основная идея использования фильтров 1 × 1 состоит в том, чтобы уменьшить объем и, следовательно, вычисления перед подачей их в более крупный фильтр, такой как 3 × 3.
На рис. 6.17 показан пример 28 × 28 × 192 выходных данных предыдущего уровня, свернутых с помощью фильтра 3 × 3 × 128, чтобы получить выходной сигнал 28 × 28 × 128; то есть 128 фильтров на выходе дают около 174 миллионов MAC. Имея фильтры 1 × 1 × 96 для уменьшения объема, а затем свертывая их с помощью фильтров 3 × 3 × 128, общие вычисления сокращаются примерно до 100 миллионов MAC, что почти позволяет сэкономить 60%. Точно так же, используя фильтры 1 × 1 × 16, предшествующие фильтрам 5 × 5 × 32, общие вычисления могут быть сокращены примерно со 120 до 12 миллионов, то есть в десять раз меньше. Фильтр 1 × 1, уменьшающий объем, также называют слоем узкого места.
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Рис. 6.17: Экономия вычислительных затрат при наличии фильтра 1 × 1 перед фильтром 3 × 3
На рисунке 6.18 показано графическое изображение единственного начального блока с образцом входных данных 2d с шириной и высотой 28 × 28 и глубиной 192, на выходе которого получаются ширина и высота 28 × 28 и глубина 256. Фильтр 1 × 1 играет двойную роль в уменьшении размерности для других фильтров, а также в создании выходного сигнала. Фильтр 1 × 1 × 64 используется для получения выходного сигнала 28 × 28 × 64. Вход, прошедший через фильтр 1 × 1 × 96 и свёрнутый с 3 × 3 × 128, генерирует выходной сигнал 28 × 28 × 128. Входной сигнал, проходящий через фильтр 1 × 1 × 16, а затем через фильтр 5 × 5 × 32, дает выходной сигнал 28 × 28 × 32. Максимальное объединение с шагом 1 и отступом используется для получения выходных данных размером 28 × 28 × 192. Так как максимальный выход объединения имеет много каналов, каждый канал проходит через другой фильтр 1 × 1 × 32 для уменьшения громкости. Таким образом, каждая операция фильтрации может выполняться параллельно и генерировать выходные данные, которые объединяются вместе для окончательного размера 28 × 28 × 256.
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Рис. 6.18: Начальный блок с несколькими фильтрами размером 1 × 1, 3 × 3, 5 × 5, производящий объединенный вывод
Блок свертки 1 × 1 играет важную роль в уменьшении объема для свертки большего размера фильтра. Начальный блок позволяет узнать несколько весов фильтров, тем самым устраняя необходимость выбора одного из фильтров.
Параллельные операции свертки различных фильтров и конкатенации обеспечивают еще большее повышение производительности.
6.6.4. Другие структуры CNN
Во многих задачах NLP, таких как анализ тональности, функции, использующие синтаксические элементы и другую структурную информацию в языке, привели к повышению производительности. На рис. 6.19 показано синтаксическое и семантическое представление, связанное с помощью дуг зависимости, которые отображаются в представление на основе дерева или графа.
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Рис. 6.19: Показано предложение с синтаксической и семантической зависимостями
Базовая CNN не фиксирует такие зависимости в языке. Следовательно, для преодоления этого недостатка была предложена структурированная CNN - CNN зависимостей (DCNN), как показано на рис. 6.20, - это один из способов представления зависимостей слов в предложении посредством встраивания слов с последующим выполнением сверток дерева очень похожим образом до матричных сверток и, наконец, использование полностью связанного слоя перед выходной классификацией [Ma + 15]. В Mou et al. [Mou + 14], предметной областью приложения являются языки программирования, а не естественные языки, и аналогичный древовидный CNN используется для изучения представления функции.
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Рис. 6.20: Структурированная CNN на основе дерева, которая может фиксировать синтаксические и семантические зависимости
Синтаксис и зависимости могут быть зафиксированы с помощью графического представления G = (V, E), где слова действуют как узлы или вершины V, а отношения между ними моделируются как ребра E. Затем над этими структурами графа могут выполняться операции свертки [Li +15].
Как видно в гл. 5, каждая структура встраивания, такая как word2vec, GloVe и т. д., захватывает разную семантику распределения, и каждая может иметь разные размеры.
Zhang et al. предложил многогрупповое ограничение нормы CNN (MGNC-CNN), которое может комбинировать различные вложения, каждое из которых имеет различную размерность в одном предложении [ZRW16]. Регуляризация может применяться либо к каждой группе (MGNCCNN), либо на уровне конкатенации (MG-CNN), как показано на рисунке 6.21.
Во многих приложениях, таких как машинный перевод, перевод текста, ответы на вопросы и другие, часто возникает необходимость сравнить два ввода на предмет сходства. Большинство этих фреймворков имеют ту или иную форму сиамской структуры с двумя параллельными фреймворками для каждого предложения, объединяющими слои свертки, нелинейные преобразования, объединение в пул и стекирование, до тех пор, пока функции не будут объединены в конце. Работа Bromley et al. для сравнения сигнатур было общим вдохновением для многих из таких фреймворков [Bro + 94].
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Рис. 6.21: MG-CNN и MGNC-CNN, показывающие различные вложения разных размеров, используемые для классификации. MG-CNN будет иметь ограничения нормы, применяемые на уровне o, в то время как MGNC-CNN будет иметь ограничения нормы, применяемые на уровнях o1 и o2, соответственно.
Мы проиллюстрируем одну такую ​​недавнюю структуру Венпенгом и др. [Yin + 16a], которые называют ее базовой би-CNN, как показано на рис. 6.22. Структура дополнительно модифицируется, чтобы иметь уровень общего внимания и очень хорошо работает в различных приложениях, таких как выбор ответа, идентификация перефразирования и вывод текста. Близнец сети, каждая из которых состоит из CNN и блоков объединения, обрабатывают одно из двух предложений, а последний уровень решает задачу пары предложений. На уровне ввода есть вложения слов из word2vec, объединенные для слов в каждом предложении. В каждом блоке используются широкие свертки, поэтому все слова в предложении могут передавать сигналы по сравнению с узкой сверткой. Используется функция активации tanh (Wxi + b) как нелинейное преобразование. Затем для каждого блока выполняется средняя операция объединения. Наконец, выходные данные обоих средних уровней объединения объединяются и передаются в функцию логистической регрессии для двоичной классификации.
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Рис. 6.22: Базовая двухканальная нейронная сеть [Yin + 16a] для задач пар предложений с использованием широких сверток, среднего пула и логистической регрессии для двоичной классификации
6.7. Применение CNN в NLP
В этом разделе мы обсудим некоторые применения CNN в различных задачах интеллектуального анализа текста. Наша цель - подвести итоги этого исследования и дать представление о популярных CNN и современном дизайне. CNN с различными модификациями и даже комбинациями с другими фреймворками, такими как LSTM, действительно использовались в разных задачах NLP. Поскольку CNN сама по себе может захватывать локальные особенности и их комбинации посредством дальнейших комбинаций, CNN в основном использовались в задачах классификации текста / документа, категоризации текста и классификации настроений. CNN теряют порядок последовательностей, хотя они использовались в задачах, основанных на последовательностях, такие как POS-теги, NER, разбиение на части и многое другое. Чтобы быть действительно эффективными в таких условиях, их нужно либо комбинировать с другими фреймворками, либо иметь закодированные позиционные особенности.
6.7.1. Классификация и категоризация текста
Многие задачи классификации текстов, которые используют n-граммы слов для фиксации локальных взаимодействий и функций, за последние несколько лет добились большого успеха с использованием фреймворков CNN. Фреймворки на основе CNN могут легко фиксировать временные и иерархические особенности в текстовых последовательностях переменной длины. Встраивание слов или символов обычно является первым слоем в этих фреймворках. В зависимости от данных и типа для получения векторного представления слов в предложениях используются предварительно обученные или статические вложения.
Collobert et al. [CW08c], [Col + 11] использует однослойный блок свертки для моделирования предложений для выполнения многих задач НЛП. Yu et al. [Yu + 14] также используют однослойную CNN для моделирования классификатора для выбора сопоставлений вопросов и ответов. Kalchbrenner et al. расширить идею формирования динамической CNN путем объединения CNN в стек и использования операций динамического объединения kmax для длинных предложений [KGB14b]. Это исследование значительно улучшено по сравнению с существующими, в то же время, подходами в части краткого текста и мультиклассовой классификации. Ким расширяет одноблочную CNN, добавляя несколько входных каналов и несколько ядер разной длины, чтобы получить комбинации n-грамм более высокого порядка [Kim14b]. В этой работе также был проведен анализ различных воздействий статических и динамических каналов, важности максимального объединения и многого другого, чтобы определить, какие базовые блоки дают более низкую частоту ошибок. Инь и др. расширить многоканальную инфраструктуру переменного ядра Кима для использования иерархической CNN, получив дальнейшие улучшения [YS16].
Сантос и Гатти используют представление на уровне от символа к предложению со структурами CNN для эффективной классификации настроений [ИК14]. Джонсон и Чжан исследуют использование встраивания регионов для эффективной категоризации короткого текста благодаря способности захватывать контексты в большем диапазоне, где встраивание слов не выполняется [JZ15]. Ван и другие выполняют семантическую кластеризацию, используя пики плотности на предварительно обученных вложениях слов, формируя представление, которое они называют семантическими кликами, с такими семантическими единицами, которые используются в дальнейшем со свертками для интеллектуального анализа короткого текста [Wan + 15a].
Zhang et al. изучили использование представлений на уровне символов для CNN вместо встраивания на уровне слов [ZZL15]. В большом наборе данных моделирование предложений на уровне символов работает очень хорошо по сравнению с традиционными разреженными представлениями или даже структурами глубокого обучения, такими как CNN или RNN с встраиванием слов. Conneau et al. разработали очень глубокую CNN вместе с модификациями, такими как ярлыки для изучения более сложных функций [Con + 16]. Исследование Сяо и Чо расширяет возможности кодирования на уровне символов для всей задачи классификации документов в сочетании с RNN с меньшим числом параметров [XC16].
6.7.2. Кластеризация текста и анализ тем
В своей работе Xu et al. использовать CNN для кластеризации коротких текстов совершенно неконтролируемым образом [Xu + 17]. Исходные ключевые слова из текста используются для генерации компактного двоичного кода с ограничениями, сохраняющими локальность. Глубокое представление характеристик достигается с помощью встраивания слов с динамической CNN в [KGB14b].
Выходы CNN подстраиваются под двоичные коды в процессе обучения.
Глубокие функции, полученные таким образом из слоев CNN, передаются в обычные алгоритмы кластеризации, такие как k-means, для окончательной кластеризации данных. Эксперименты показывают, что этот метод работает значительно лучше, чем традиционные методы, основанные на признаках, для различных наборов данных.
Lau et al. совместно изучать темы и языковые модели, используя структуры на основе CNN, что приводит к более согласованным, эффективным и интерпретируемым тематическим моделям [LBC17]. Контекст документа фиксируется с использованием структуры CNN, и результирующие векторы документов объединяются с векторами тем, чтобы обеспечить эффективное представление темы документа. Языковая модель состоит из тех же векторов документов, что и выше, и LSTM.
6.7.3. Синтаксический анализ
В основополагающей работе Коллоберта и др. многие задачи NLP, такие как теги POS, разбиение на части, разрешение именованных сущностей и присвоение семантических ролей, выполняются впервые с использованием встраивания слов и блоков CNN [Col + 11]. Исследование показывает силу использования CNN для поиска функций в автоматическом режиме, а не вручную созданных функций для конкретных задач, используемых для аналогичных задач. Zheng et al. показывают, что представления на основе символов, фреймворки на основе CNN и динамическое программирование могут быть очень эффективными при выполнении синтаксического анализа без разработки каких-либо специфических для задачи функций в таких сложных языках, как китайский [Zhe + 15]. Сантос и Задрозный показывают, что использование встраиваний на уровне символов совместно с встраиванием на уровне слов и глубокими CNN может еще больше улучшить задачи тегирования POS [DSZ14] на английском и португальском языках.
Zhu et al. предложили рекурсивную CNN (RCNN) для захвата сложной структуры в деревьях зависимостей. RCNN имеет базовое k-арное дерево в качестве единицы, которая может захватывать дерево синтаксического анализа с отношениями между узлами и дочерними элементами. Эта структура может быть применена рекурсивно для отображения представления всего дерева зависимостей. В RCNN было показано, что она очень эффективна в качестве модели повторного ранжирования в анализаторах зависимостей [Zhu + 15].
6.7.4. Извлечение информации
Как обсуждалось в гл. 3, Извлечение информации (IE) - это общая категория, которая имеет различные подкатегории, такие как извлечение сущностей, извлечение событий, извлечение отношений, разрешение кореференции и связывание сущностей, и это лишь некоторые из них. В работе Chen et al., вместо использования закодированных вручную функций, исследователи используют представления на основе слов для захвата лексических функций и функций на уровне предложений, которые работают с модифицированной CNN для превосходного извлечения множества событий в тексте [Che + 15]. Исследователи используют контекст слова, позиции и тип события в своих представлениях и встраиваниях, перетекающих в CNN с несколькими картами функций. Вместо CNN с максимальным пулом, который может пропустить несколько событий, происходящих в предложении, исследователи используют динамическое множественное объединение. В динамическом групповом объединении карты функций делятся на три части, для каждой из которых находится максимум.
Как обсуждалось выше в разделе о NLP, Zheng et. al [Zhe + 15] и Santos et., все [DSZ14] используют CNN для классификации отношений без каких-либо кодированных вручную функций. В работе Vu et al., классификация отношений использует комбинацию CNN и RNN. В предложении, которое имеет сущности и отношения между ними, исследователи разделяют левую и среднюю, среднюю и правую части предложения, переходя в два разных вложения слов и слои CNN с максимальным объединением. В этом дизайне особое внимание уделяется средней части, которая является важным аспектом классификации отношений по сравнению с предыдущими исследованиями. Двунаправленные RNN с дополнительным скрытым слоем вводятся для захвата аргументов отношения из последующих слов. Комбинированный подход демонстрирует значительные улучшения по сравнению с традиционными функциональными и даже независимо используемыми CNN и RNN.
Нгуен и Гришем используют основанную на CNN структуру для извлечения отношений [NG15b]. Они используют вложения слов и вложения позиций, объединенные в качестве входного представления предложений с сущностями, имеющими отношения. Они используют CNN с несколькими размерами фильтров и максимальным объединением. Интересно видеть, что производительность их фреймворка лучше, чем у всех созданных вручную систем машинного обучения на основе инженерии функций, которые используют многие морфологические и лексические функции.
В работе Аделя и др. исследователи сравнивают многие методы от традиционного машинного обучения на основе функций до глубокого обучения на основе CNN для классификации отношений в контексте заполнения слотов [AS17a]. Подобно описанной выше работе, они разбивают предложения на три части для захвата контекстов и используют CNN с объединением k-max.
6.7.5. Машинный перевод
Hu et al. подчеркнули, как CNN могут использоваться для кодирования семантических сходств и контекстов в парах перевода и, таким образом, обеспечивать более эффективные переводы [Hu + 15].
Еще одним интересным аспектом этого исследования является использование учебной программы, в которой данные обучения классифицируются от простого к сложному, и используется фраза к предложению для кодирования контекстов для эффективных переводов.
Meng et al. создали структуру на основе CNN для направления сигналов как от источника, так и от цели во время машинного перевода [Men + 15]. Использование CNN со стробированием дает представление о том, какие части исходного текста влияют на целевые слова. Объединение их со всем исходным предложением для контекста дает лучшую совместную модель.
Геринг и др. использовали CNN с модулем внимания, показывая тем самым не только быструю и распараллеливаемую реализацию, но и более эффективную модель по сравнению с моделями на основе LSTM. Использование словарных и позиционных встраиваний во входное представление, наложение фильтров друг на друга для иерархических отображений, стробированных линейных единиц и многоэтапного модуля внимания дает исследователям реальное преимущество в англо-французском и англо-немецком переводе [Geh + 17b].
6.7.6. Обобщение
Денил и др. Я показал, что наличие иерархии вложений слов, которые составляют вложения предложений, которые, в свою очередь, составляют вложения документов, и использование динамических CNN дают полезные обобщения документов, а также эффективные визуализации [Den + 14]. Исследование также подчеркивает, что композиция может захватывать от низкоуровневых лексических функций до семантических концепций высокого уровня в различных задачах, включая обобщение, классификацию и визуализацию.
Ченг и Лапата разрабатывают нейронную структуру, объединяющую CNN для иерархического кодирования документов и экстрактора внимания для эффективного резюмирования документов [CL16]. Отображение представлений, очень близких к реальным данным, где есть композиция слов в предложения, предложения в абзацы, абзацы для всего документа с использованием CNN и максимальное объединение, дает исследователям явное преимущество в захвате как локальной, так и глобальной информации о предложениях.
6.7.7. Вопросы и ответы
Донг и др. используют многоколоночные CNN для анализа вопросов с различными аспектами, такими как путь ответа, тип ответа и контексты ответа [Don + 15b]. Встраивание уровней ответов с использованием сущностей и отношений с использованием низкоразмерного пространства встраивания используется вместе со слоем оценки наверху для ранжирования ответов кандидатов. В работе показывается, что без ручного кодирования или инженерных функций дизайн обеспечивает очень эффективную систему ответов на вопросы.
Северин и Москитти показывают, что использование реляционной информации, полученной в результате совпадений между словами, используемыми в вопросе, и ответами с помощью структуры на основе CNN дает очень эффективную систему ответов на вопросы [SM15]. Если мы сможем сопоставить вопрос с поиском фактов из базы данных, Yin et al. показывают в своей работе, что двухэтапный подход с использованием структуры на основе CNN может дать отличные результаты [Yin + 16b]. Факты в ответах сопоставляются с субъектом, предикатом и объектом. Тогда соединение объекта от упоминания в вопросе к субъекту, использующее CNN уровня персонажа, является первым этапом конвейера. Сопоставление фактического предиката с вопросом с использованием CNN на уровне слов с внимательным максимальным объединением - это второй этап конвейера.
6.8. Быстрые алгоритмы для сверток
CNN, как правило, более параллельны по своей природе по сравнению с другими архитектурами глубокого обучения. Однако по мере увеличения размера обучающих данных потребность в более быстрых прогнозах в режиме, близком к реальному времени, и аппаратное обеспечение на базе GPU для распараллеливания операций становятся все более распространенными, операции свертки в CNN прошли через многие улучшения. В этом разделе мы обсудим некоторые быстрые алгоритмы для CNN и дадим представление о том, как можно ускорить свертки с меньшим количеством операций с плавающей запятой [LG16].
6.8.1. Теорема о свертке и быстрое преобразование Фурье
Эта теорема утверждает, что свертка во временной области (любой дискретный ввод, такой как изображение или текст) эквивалентна точечным умножениям в частотной области.
Мы можем представить это преобразование как быстрое преобразование Фурье (БПФ) входа и ядра, умножение его и обратное БПФ.
(f × g) (t) = F−1 (F (f) · F (g))                                                       (6.42)
Операции свертки - это алгоритм порядка n2, тогда как было показано, что БПФ - это nlog (n). Таким образом, для большей последовательности даже с 2 операциями БПФ и обратным БПФ можно показать, что n + 2nlog (n) <n2, что дает значительное ускорение.
6.8.2. Алгоритм быстрой фильтрации
Алгоритмы Винограда используют вычислительные приемы для уменьшения умножения в операциях свертки. Например, если входные данные 1d размера n необходимо свернуть с помощью фильтра размера r, чтобы получить на выходе размер m, то в нормальном режиме потребуется умножение m × r. Можно показать, что минимальные алгоритмы фильтрации F (m, r) требуют только μ (F (m, r)) = m + r − 1 умножений. Давайте рассмотрим простой пример с входом [d0, d1, d2, d3] размера 4, свернутым с фильтром [g0, g1, g2] размера 3, чтобы получить выходные данные размера 2 [m1, m2]. При традиционной свертке нам потребуется 6 умножений, но с расположением входных данных, как показано:
d0 d1 d2
d1 d2 d3 [g0g1g2] = [m1 + m2 + m3] 
                                              [m2 − m3 − m4]                                                  (6.43)
где
m1 = (d0 - d2) g0                                                                              (6.44)
m2 = (d1 + d2) (g0 + g1 + g2) / 2                                                      (6.45)
m3 = (d2 - d1) (g0 - g1 + g2) / 2                                                        (6.46)
m4 = (d1 - d3) g2                                                                              (6.47)

Таким образом, умножения уменьшаются только до m + r −1, т. e. до 4, а экономия составляет всего 6 / 4 = 1,5. Добавки (g0 + g1 + g2) / 2 и (g0 − g1 + g2) / 2 могут быть предварительно вычислены из фильтров, что дает дополнительные преимущества в производительности. Эти алгоритмы быстрой фильтрации можно записать в матричной форме как:
Y = AT [(Gg) ◦ (BTd)]                                                                    (6.48)
где ◦ - поэлементное умножение. Для 1d примера матрицы:
В = [1 0 −1 0
01 1 0
0 −11 0
01 0 -1]

G = [1 0 0
½ ½  ½ 
½  - ½  ½ 
0  0  1 ]                                                                            (6.49)

АT = [11 1 0
         0 1 −1 −1]                                                                         (6.50)
      g = [g0 g1 g2]                                                                        (6.51)

d =[d0 d1 d2 d3]                                                                        (6.52)
Минимальные двумерные алгоритмы могут быть выражены в терминах вложенных одномерных алгоритмов.
Например, F (m, r) и F (n, s) могут использоваться для вычисления выходных m × n для фильтра размера r × s. Таким образом, 
μ (F (m × n, r × s)) = μ (F (m, r)) μ (F (n, s)) = (m + r −1) (n + s − 1)   (6.53 )
Точно так же матричная форма для 2-мерного алгоритма может быть записана как:
Y = AT [(GTgG) ◦ (BTdB)] AT                                                      (6.54)
Фильтр g теперь имеет размер r × r, и каждый вход можно рассматривать как плитку размером (m + r −1) × (m + r −1). Обобщение на неквадратную матрицу может быть выполнено вложением F (m, r) и F (n, s), как указано выше. Таким образом, для F (2 × 2,3 × 3) обычная свертка будет использовать 4 × 9 = 36 умножений, тогда как для алгоритмов быстрой фильтрации требуется только (2 + 3−1) × (2 + 3−1) = 16, что дает экономию 36 /16 = 2,25.
Вот несколько практических советов относительно CNN, особенно для задач классификации.
· Для задачи классификации всегда хорошо начинать с Юн Кима и др. предложил CNN со словесным представлением [Kim14b].
· Использование предварительно обученных встраиваний с word2vec или GloVe по сравнению с 1-горячим векторным представлением в качестве единственного статического канала для сопоставления предложений должно выполняться до точной настройки или введения нескольких каналов.
· Наличие нескольких фильтров, таких как [3,4,5], количество карт функций от 60 до 500 и ReLU в качестве функции активации часто дает хорошую производительность [ZW17].
· Пул 1-макс по сравнению со средним, а объединение k-макс дает лучшие результаты [ZW17]
· Выбор метода регуляризации, т. е. L1 или L2, или исключения, и т. д., зависит от набора данных, и всегда полезно попробовать без регуляризации и с регуляризацией и сравнить метрики проверки.
· Кривые обучения и их отклонения при многократной перекрестной проверке дают интересное представление о «устойчивости» алгоритма. Чем пологие кривые и меньшие отклонения, весьма вероятно, что оценки метрики валидации точны.
· Понять прогнозы модели на данных проверки, чтобы искать закономерности в ложноположительных и ложноотрицательных результатах. Это из-за орфографических ошибок? Это из-за зависимостей и заказов? Это из-за нехватки обучающих данных для рассмотрения случаев?
· Вложения на основе символов могут быть полезны при наличии достаточного количества обучающих данных.
· Добавление других структур, таких как LSTM, иерархическая, основанная на внимании следует делать постепенно, чтобы увидеть влияние каждой комбинации.

6.9. Практический пример
Чтобы получить практический опыт решения реальной проблемы анализа данных, которая включает в себя многие методы и структуры, описанные в этой главе, мы воспользуемся классификацией тональности по тексту. В частности, мы будем использовать общедоступный набор данных о настроениях авиакомпаний США, взятых из Twitter, для классификации твитов как положительных, отрицательных или нейтральных. Отрицательные твиты можно классифицировать по их причине.
Мы оценим эффективность различных методов глубокого обучения с участием CNN с различными входными представлениями для классификации настроений. В этом тематическом исследовании классификация будет основана только на тексте твита, а не на каких-либо метаданных твита. Мы рассмотрим различные представления текстовых данных, такие как вложения слова, обученных на основе данных, предварительно обученные вложения слов и вложения символов. Мы не проделали значительную оптимизацию гиперпараметров для каждого метода, чтобы показать лучшее, что он может дать без дальнейшей тонкой настройки. Читатели могут использовать записную книжку и код для самостоятельной настройки.
6.9.1. Программные инструменты и библиотеки
Во-первых, нам нужно описать основные инструменты и библиотеки с открытым исходным кодом, которые мы будем использовать в нашем примере.
· Keras (www.keras.io) - это высокоуровневый API глубокого обучения, написанный на Python, который предоставляет общий интерфейс для различных бэкэндов глубокого обучения, таких как TensorFlow, CNTK и Theano. Код может без проблем работать на процессорах и графических процессорах. Все эксперименты с CNN проводятся с использованием Keras API.
· TensorFlow (https://www.tensorflow.org/) - популярная библиотека машинного обучения и глубокого обучения с открытым исходным кодом. Мы используем TensorFlow в качестве нашей библиотеки глубокого обучения, но Keras API в качестве основного API для экспериментов.
· Pandas (https://pandas.pydata.org/) - популярная реализация с открытым исходным кодом для структур данных и анализа данных. Мы будем использовать его для исследования данных и некоторой базовой обработки.
· scikit-learn (http://scikit-learn.org/) - популярный открытый исходный код для различных алгоритмов и оценок машинного обучения. Мы будем использовать его только для выборки и создания наборов данных для оценок в нашем тематическом исследовании.
· Matplotlib (https://matplotlib.org/) - популярный открытый исходный код для визуализации.
Мы будем использовать его для визуализации производительности.
Теперь мы готовы сосредоточиться на следующих четырех подзадачах.
· Исследовательский анализ данных
· Предварительная обработка данных и разделение данных
· Модельные эксперименты и анализ CNN
· Понимание и улучшение моделей

6.9.2. Исследовательский анализ данных
Всего имеется 14 640 помеченных данных, 15 функций / атрибутов, из которых только текст атрибута будет использоваться для обучения. Классы делятся на три категории: положительные, отрицательные и нейтральные. Мы возьмем 15% общих данных для тестирования из всего набора данных стратифицированным способом и аналогично 10% из данных обучения для проверки. Обычно перекрестная проверка (CV) используется как для выбора модели, так и для настройки параметров, и мы будем использовать набор проверки, чтобы сократить время выполнения. Мы сравнили оценки CV с отдельным набором проверок, и оба выглядели сопоставимыми.
На рис. 6.23 показано распределение классов. Мы видим перекос в распределении классов в сторону негативных настроений по сравнению с позитивными и нейтральными.
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Рис. 6.23: Количество экземпляров в разных классах
Одним из интересных шагов в EDA является построение облака слов для данных о положительных и отрицательных настроениях из всего набора данных, чтобы понять некоторые из наиболее часто используемых слов и, возможно, коррелировать с этим настроением. Жетоны, которые чрезмерно представлены в облаке, в основном представляют собой прилагательные, такие как «спасибо», «отлично», «хорошо», «ценю» и т.д. отмененный рейс »,« веб-сайт »и т. д., как показано на Рис. 6.24.
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Рис. 6.24: Облако слов для негативных настроений
6.9.3. Предварительная обработка данных и разделение данных
Мы выполняем некоторую дополнительную базовую обработку данных, чтобы удалить стоп-слова и упоминания из текста, поскольку они в основном бесполезны в нашей задаче классификации. В листинге ниже показан основной код очистки данных.
1 # remove stop words with exceptions
2 def remove stopwords ( input text ):
3 stopwords list = stopwords . words ( ’english ’ )
4 # Some words which might i n d i c a t e a c e r t a i n s e n t i m e n t are kept
5 whitelist = [ ”n’t” , ”not” , ”no” ]
6 words = input text . split ()
7 clean words = [ word for word i n words i f (
8 word not in stopwords list or word i n whitelist ) and
len ( word ) > 1]
9 return ” ” . join ( clean words )
10 # remove mentions
11
12
13 def remove mentions ( input text ):
14 return re . sub ( r ’@\w+ ’ , ’ ’ , input text )
15
16
17 t w e e t s = t w e e t s [ [ TEXT COLUMN NAME, LABEL COLUMN NAME] ]
18 t w e e t s [TEXT COLUMN NAME] = t w e e t s [TEXT COLUMN NAME ] . apply (
19 remove stopwords ) . apply ( remove mentions )
20 tweets . head ()

Затем мы разделим все данные на обучение и тестирование, 85% для обучения и 15% для тестирования. Мы построим различные модели, используя одни и те же обучающие данные, и оценим их по тем же тестовым данным, чтобы получить четкое сравнение.
1 X train , X test , y train , y test = train test split (
2 t w e e t s [TEXT COLUMN NAME] , t w e e t s [LABEL COLUMN NAME] ,
test size =0.15 , random state =37)

Затем мы выполняем токенизацию, разбиение обучающих данных на обучение и проверку, и отображение последовательности с фиксированным размером. Мы используем максимальную длину текста в нашем корпусе, чтобы определить длину последовательности и выполнить заполнение.
1 # t o k e n i z a t i o n with max words d e f i n e d and f i l t e r s to remove
characters
2 tk = Tokenizer ( num words=NB WORDS,
3 filters= ’ !”# $%&()∗+ , −./:; <= >?@[ \ \ ] ˆ ‘ {|} ˜ \ t \n ’ ,
4 lower=True ,
5 split=” ” )
6 tk . fit o n texts (X train )
78 # understand the sequence distribution
9 seq lengths = X train . apply ( lambda x : len (x. split ( ’ ’ )))

1 # convert train and test to sequence using the tokenizer
trained on the training data
2 X train total = tk . texts t o sequences (X train )
3 X test total = tk . texts t o sequences (X test )
4
5 # pad t h e sequences to a maximum l e n g t h
6 X train seq = pad sequences ( X train t o t a l , maxlen=MAX LEN)
7 X test seq = pad sequences ( X test t o t a l , maxlen=MAX LEN)
8
9 # perform encoding of
10 le = LabelEncoder ()
11 y train le = le . fit transform ( y train )
12 y test le = le . transform ( y test )
13 y train one hot = to categorical ( y train le )
14 y test one hot = to categorical ( y test le )

6.9.4. Эксперименты с моделью CNN
После того, как мы предварительно обработали и создали наборы для обучения, проверки и тестирования, мы выполним различный модельный анализ данных. Сначала мы проведем базовый анализ, используя простой CNN, а затем приступим к запуску различных конфигураций и модификаций CNN, которые обсудим в этой главе. Затем мы показываем базовый код CNN, который вводит слой с максимальной длиной предложения 24, который выводит 100-мерные векторы, свернутые с 64 фильтрами, каждый высотой или размером 3, что эквивалентно 3-граммовым выборкам, проходящим через нелинейный ReLU - функции активации, затем слой максимального пула, который сглаживается так, чтобы вход полностью связанного слоя, выводил на слой soft max с 3 выходами для 3 классов.
1 # b a s i c CNN Model t o u n d e r s t a n d how i t works
2 def base cnn model () :
3 # Embedding
4 # Layer−>Convolution1D−>MaxPooling1D−>Flatten −>
FullyConnected −>Classifier
5 model = Sequential (
6 [ Embedding ( input dim =10000, output dim =100,
input length =24) ,
7 Convolution1D ( f i l t e r s =64, kernel size =3, padding= ’
same ’ , activation= ’relu ’ ) ,
8 MaxPooling1D () ,
9 Flatten () ,
10 Dense (100 , activation= ’relu ’ ) ,
11 Dense (3 , activation= ’softmax ’ ) ])
12 model . summary ()
13 return model
15
16 # train and validate
17 base cnn model = base cnn model ()
18 base history = train model (
19 base cnn model ,
20 X train seq ,
21 y train ,
22 X valid seq ,
23 y valid )

Здесь показан один канал, использующий предварительно обученные вложения и модель CNN Юна Кима с несколькими фильтрами.
1 # create embedding matrix for the experiment
2 emb matrix = create embedding matrix ( tk , 100, embeddings )
3
4 # s i n g l e c h a n n e l CNN with m u l t i p l e f i l t e r s
5
6
7 def single channel kim cnn () :
8 text seq i n p u t = I n p u t ( shape =(MAX LEN, ) , d t y p e = ’int32 ’ )
9 text e m b e d d i n g = Embedding (NB WORDS + 1 ,
10 EMBEDDING DIM,
11 weights =[emb matrix ] ,
12 trainable=True ,
13 input l e n g t h =MAX LEN) (
text seq input )
14
15 filter sizes = [3 , 4, 5]
16 convs = []
17 # parallel layers for each filter size with conv1d and max
pooling
18 for filter size i n filter sizes :
19 l conv = Convolution1D (
20 f i l t e r s =128,
21 kernel size=filter size ,
22 padding= ’same ’ ,
23 activation= ’relu ’ ) ( text embedding )
24 l pool = MaxPooling1D ( f i l t e r size )(l conv )
25 convs . append ( l pool )
26 # concatenate outputs from all cnn blocks
27 merge = concatenate ( convs , axis =1)
28 convol = Convolution1D (128 , 5, activation= ’relu ’ ) ( merge )
29 pool1 = GlobalMaxPooling1D () ( c onvol )
30 dense = Dense (128 , activation= ’relu ’ , name= ’Dense ’ ) ( pool1 )
31 # classification layer
32 out = Dense (3 , activation= ’softmax ’ ) ( dense )
33 model = Model (
34 inputs =[ text seq input ],
35 outputs=out ,
36 name=”KimSingleChannelCNN” )
37 model . summary ()
38 return model
40	
41 single channel kim model = single channel kim cnn ()
42 single channel kim model history = train model (
43 single channel kim model , X train seq , y train ,
X valid seq , y valid )

Мы перечислим различные эксперименты с их названием и их целью, прежде чем выделять результаты каждого из них.
Мы используем некоторые практические аспекты глубокого обучения при обучении моделей, как показано ниже:
1 # use the validation loss to detect the best weights to be
saved
2 checkpoints . append ( ModelCheckpoint ( chec kpoint file , monitor= ’
val loss ’ , verbose =0, save best only=True ,
save weights only =True , mode= ’auto ’ , period =1) )
3 # output to TensorBoard
4 checkpoints . append ( TensorBoard ( log dir= ’ ./ logs ’ , write graph=
True , write images=False ))
5 # i f no improvements in 10 epochs , then quit
6 checkpoints . append ( EarlyStopping ( monitor= ’val loss ’ , patience
=10) )

В Таблице 6.1 мы выделим результаты запуска различных архитектур CNN, приведенные выше, и результаты, которые мы отслеживаем с точностью и средней точностью.
Таблица 6.1: Сводка результатов теста CNN
Точность экспериментов% Средняя точность%
База CNN 77,77 82
Базовая CNN + выбывшие 70,85 78
Базовая CNN + регуляризация 78,32 83
Мультифильтры 80,55 86
Мультифильтры + увеличенные карты 79,18 85
Мультифильтры + статические предварительно обученные вложения 77,41 84
Мультифильтры + динамические предварительно обученные вложения 78,96 85
Единый канал Юн Кима 79,50 85
Многоканальный Юн Ким 80,05 86
Kalchbrenner et al. динамический CNN 78,68 85
Многоканальная переменная MVCNN 79,91 85
Многогрупповой CNN MG-CNN 81.96 87
Расширенный на уровне слов CNN 77.81 84
CNN уровня персонажа 73.36 81
CNN 67.89 73 очень глубокого уровня персонажа
Расширенный уровень персонажа CNN 74.18 78
C-LSTM 79.14 85
AC-BiLSTM 79,46 86

Жирный шрифт указывает на лучший результат или точность среди всех экспериментов.
Мы перечислим некоторые высокоуровневые анализы и наблюдения из Таблицы 6.1 и наш анализ из различных прогонов ниже:
· Базовая CNN с регуляризацией L2, кажется, улучшает переоснащение как с точки зрения уменьшения потерь, так и уменьшения максимальных потерь. Пропадание, кажется, вредит производительности базового CNN.
· Несколько слоев и несколько фильтров, кажется, улучшают точность и среднюю точность более чем на 2%.
· Использование предварительно обученных встраиваний, которые обучаются на данных, дает одно из лучших результатов и во многом соответствует результатам многих исследований.
· Ограничение Multigroup Norm MG-CNN показывает лучшие результаты как по точности, так и по средней точности в словарном представлении. Использование трех каналов встраивания с двумя разными вложениями с разными размерами, кажется, дает преимущество.
· Модель Юн Кима с двумя каналами имеет вторые лучшие характеристики и подтверждает, что ее всегда следует использовать в задачах классификации. Производительность двухканального трафика вместе с MG-CNN подтверждает, что увеличение количества каналов помогает модели в целом.
· Увеличение глубины и сложности CNN и, следовательно, параметров не оказывает большого влияния на обобщение, опять же, это может быть объяснено небольшим размером обучающих данных.
· Символьное представление показывает относительно низкую производительность, что хорошо согласуется с большинством исследований из-за ограниченного корпуса и размера обучения.
· Введение сложности путем объединения CNN и LSTM не улучшает производительность и, опять же, может быть связано со сложностью задачи и размером обучающих данных.

6.9.5. Понимание и улучшение моделей
В этом разделе мы дадим несколько практических советов и рекомендаций, которые помогут исследователям разобраться в моделях поведения и улучшить их.
Один из способов понять поведение модели - это посмотреть на прогнозы на различных уровнях с использованием тех или иных методов уменьшения размерности и методов визуализации. Чтобы изучить поведение предпоследнего слоя перед слоем классификации, мы сначала создаем клон модели, удалив последний слой и используя набор тестов для генерации многомерных выходных данных из этого слоя. Затем мы используем PCA для получения 30 компонентов из 128-мерных выходных данных и, наконец, проецируем это с помощью TSNE.
Как показано на рис. 6.25, мы видим ясную причину, почему одноканальная CNN Юна Кима работает лучше, чем базовая CNN.
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Рис. 6.25: Предпоследний слой со 128 измерениями используется для визуализации тестовых данных с помощью PCA и TSNE. (а) Скрытый слой из базовой CNN. (¯ b) Скрытый слой одноканальной CNN Юна Кима заставляет даже предложения, в которых они есть, классифицироваться как отрицательные. Может помочь добавление большего количества позитивов схожим языком и использование среднего пула.
Затем мы проанализируем ложные срабатывания и ложные отрицания, чтобы понять закономерности и причины, чтобы улучшить модели.
В таблице 6.2 выделены часть текста и возможные причины. Такие слова, как поздний полет, накладные расходы и т. д., настолько представлены в негативе, что добавление поддержки смайликов и даже внедрений, которые были обучены на них, может улучшить примеры, в которых они используются.
Таблица 6.2: Ложноотрицательные результаты
Текстовое предсказание Возможная причина
Kudos билетные агенты, делающие пассажиров
чековые сумки большие накладные расходы
Минус-слово чрезмерно представлен
Благодарный единый наземный персонал поставил последнее
место на последнем рейсе из дома поздно рейс все еще дома
Минус-слово чрезмерно представлен
Emoji любит летать Neutral Emojis

В Таблице 6.3 выделены некоторые тексты и возможные причины. Такие слова, как «здорово», «спасибо» и т. д., настолько представлены в положительных результатах, что даже предложения, в которых они есть, могут быть классифицированы как положительные. Может помочь добавление большего количества негативов с похожим языком и использование среднего пула. Наличие наборов данных на основе сарказма, обучение встраиваний на них и использование их в качестве входного канала может улучшить производительность.
Использование Lime для объяснения моделей, особенно ложных срабатываний и ложных отрицаний, дает представление о причине с весами, связанными с ключевыми словами, как показано на рис. 6.26.
Таблица 6.3: Ложные срабатывания
Текстовое предсказание Возможная причина
Забудьте о бронировании, спасибо отличной компании
я еще раз полетел, спасибо
Положительное ключевое слово
чрезмерно представленный и сарказм
Спасибо, наконец-то сделали это и пропустили встречи. Теперь положительное ключевое слово
чрезмерно представленный и сарказм
Мой рейс отменен светодиод
беспорядок, пожалуйста, спасибо круто
Положительные ключевые слова представлены чрезмерно
и сарказм

1 обертка def keras (тексты):
2 seq = tk. тексты в последовательности (тексты)
3 текстовых данных = последовательности заполнения (seq, maxlen = MAX LEN)
4 возвратных одноканальных модели ким. прогнозировать (текстовые данные)
5
6 exp = объяснитель. объясните пример (забудь оговорки, спасибо
отличная компания, я однажды отменил полетный рейс
Еще раз спасибо ' ,
7 керасов обертка,
8 функций = 10,
9 ярлыков = [0, 2]
10)
–0,4
благодарить
Отрицательный
Положительный
отличный
отменен
оговорки
летал
Компания
забыть
очередной раз
я
рейс
Особенности
–0,2 0,0 0,2 0,4 0,6

Рис. 6.26: Lime выводит веса для слов как положительного, так и отрицательного класса
6.9.6. Упражнения для читателей и практиков
Некоторые другие интересные проблемы и исследовательские вопросы, которые читатели и практики могут попытаться решить, перечислены ниже:
1. Каково измеримое влияние предварительной обработки, такой как удаление стоп-слов, упоминаний, основ и прочего, на производительность CNN?
2. Влияет ли встраиваемое измерение на CNN; например, 100-мерное встраивание против 300-мерного встраивания?
3. Изменяет ли тип встраивания, такой как word2vec, GloVE и другие вложения слов, производительность во фреймворках CNN?
4. Имеется ли влияние на производительность, когда для представления предложений с помощью фреймворков CNN используются множественные вложения, такие как слово, POS-теги, позиционное обозначение?
5. Улучшает ли настройка гиперпараметров по различным параметрам валидацию и, следовательно, значительно ли результаты тестирования?
6. Многие исследователи используют ансамбль моделей с разными параметрами, а также с разными типами моделей. Это улучшает производительность?
7. Улучшает ли встраивание предварительно обученных символов производительность по сравнению с тем, которое мы настраиваем на ограниченных обучающих данных?
8. Использование некоторых стандартных структур CNN, таких как AlexNet, VGG-16 и других, с модификациями для обработки текста и их обзор в наборе данных кажется дальнейшим интересным исследованием.

6.10. Обсуждение
Джеффери Хинтон в своем выступлении «Что не так со сверточными нейронными сетями?», сделанный в Массачусетском технологическом институте, освещает некоторые проблемы с CNN, особенно в отношении максимального объединения.
В докладе объясняется, как максимальное объединение может «игнорировать» некоторые важные сигналы из-за предвзятого отношения к поиску «ключевых» характеристик. Другой вопрос, который был выделен, касался того, как фильтры могут захватывать различные функции и создавать функции более высокого уровня, но не в какой-то степени улавливать «взаимосвязь» между этими функциями. Например, наличие функций, обнаруживающих глаза, уши, рот при распознавании лиц с использованием CNN с различными фильтрами и слоями, не может выделить изображение с их наличием, но не в нужном месте. Капсульные сети, использующие капсулы в качестве основного строительного блока, рассматриваются как альтернативный дизайн для преодоления этих проблем [SFH17].
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